

APPLICATIONS OF WAREHOUSING AND DATA MINING SPECIAL EXECUTIVE CONFERENCE: Trends And

Technologies For Knowledge Management

The Hubble Space Telescope Engineering Data Warehouse

Presented By: Ken Lehtonen NASA/Goddard

April 20-21, 1998

1

Agenda

- υ Introduction: "Quick Tour" of Hubble's Universe
- **Overview of HST Reengineering Project**
- **v** Application of Data Warehouse Technology
- v Progress To Date
- **v** Remaining Challenges
- **v** Lessons Learned
- **v** For More Information

Comparison before and after HST Servicing Mission 1 M100 Galactic Nucleus

Wide Field Planetary Camera 1

Wide Field Planetary Camera 2

Starbirth Region in M33 Nebula, NGC604

HST Young Galaxy Survey

Mars

STScI-PRC97-09a

- Ne-engineer the HST operational systems to streamline and modernize HST's overall ground system operations
- Neduce overall operations and maintenance cost of the system by at least 50% through automation of routine functions and use of off-the-shelf components
- v Provide for monitoring the ground and space systems by the system itself, involving operations personnel *on an exception basis only*
- v Provide an integrated system that replaces the functionality of currently disparate systems and data "marts"
- U Support access to engineering telemetry data necessary to perform diagnosis from anywhere in the world
- Be a technological leader in ground systems by incorporating the latest proven technology and use, to the maximum extent practical, Commercial Off-The-Shelf (COTS) products (e.g., data warehouse)

- Commands and controls the Hubble Space Telescope
- v Processes and stores all of the *engineering* telemetry data:
 - spacecraft temperature
 - electrical power
 - attitude
 - on-board computer dumps, etc.
- v Tracks all "vital signs" of the HST in a mission-critical sense
- U Is evolving toward "lights-out" operations [or at least "dimmed"]

Elements of the End-to-End System

- U Centralize all of HST's multiple data stores into one data warehouse
- v Provide immediate access to all of HST's engineering telemetry data
- Enable user to issue "canned," customizable queries or to pose complex questions of the data using standard Structured Query Language statements or commercial tools
- Reduce the amount of time to analyze/predict anomalies with the HST spacecraft subsystems
- v Provide access to engineering telemetry for a spacecraft with:
 - Full-time, 24x7 operations
 - A mission life expectancy to year 2010 (with two more servicing missions scheduled)

- Conducted product searches; downloaded demo software; and, contacted prospective vendors
- U Evaluated several data warehouse products and conducted performance benchmarks on each: benchmarking was critical
- Selected Red Brick Systems and initiated a small pilot phase with the Space Telescope Science Institute
 - Retained the services of a Red Brick consultant to assist in the design of the schema and to work issues with Corporate
 - Held several vendor training classes for the team including DBAs
- U Incorporated results of pilot phase into the overall architecture and design of the CCS for a future delivery. Pilot phase looked at DW structure and compared:
 - segmentation by time (months/years) vs.
 - segmentation by mnemonic

The Analysis Spectrum

General **Data Warehouse Discrete State** Abstract Analysis Scientist relational operations count occurrences Instrument correlate events **Engineer Summary Analysis** long-term trends **Operations** averages **Detailed Analysis Spacecraft Engineer** short periods of time high granularity **Time Continuum Specific** All-points flat files

14

- v Problem In A Nutshell: "In one year, HST engineering stream produces 1.5 TB in flat files or 100 billion rows in a database."
- **v** Solution: "Implement Data Reduction techniques":
 - Algorithmic Data Reduction: using "change-only" and statistical sampling, 100 B rows/year reduced to 1.8 B rows/year + indices and stored in the DW on high-density RAID disk drives
 - Data Compression: 1.5 TB/year compressed to 500 GB/year and stored in the flat-file archive using DLT jukebox technology
 - » "DATA FROM LAUNCH THROUGH YESTERDAY IS ONLINE"
- Once the data has been cleansed and "pre-loaded", the Red Brick Product will:
 - Load 24 hours of data in 15 minutes!!
 - Segment the data by month
 - Store the data into files based on time
 - Support fast queries via "star indices"

- Data Warehouse manages aggregate data
 - is used for majority of analysis by spacecraft engineers:
 - » trends, signatures, relations, or data mining
 - » time-based analysis at low resolution, on the order of days to weeks
 - » tool to focus analysis from general to specific
- Data Warehouse becomes index into flat files
 - flat-file requests should be very specific:
 - » time resolution from milliseconds to hours
 - » few to several data items

v Summary:

- Constructed the data warehouse for 80% of our analyses
- Preserved 100% of our data in an archive
- Used a common index: <u>time</u> (GUI or data server bridges the data sets)

Application of Data Warehouse Technology "Current Schema Contents"

v Engineering Telemetry

- Averaged, high rate: Mnemonic, Start/Stop Time, Min, Max, Avg,
 Telemetry Format, Sample Count, Status flags
- Change Only, low rate: Mnemonic, Start/Stop Time, Telemetry Format, Discrete Value, EU value, Raw Value, Status flags

1) Events

- Spacecraft and Orbital Events, planned, not actual
- Used to find/describe telemetry

1) Metadata

- Mnemonic definitions and descriptive data ("definitions & attributes")
- Discrete codes for "Discrete & Binary" mnemonics ("valid values")
- Event Class descriptions and defaults

v Dimensions

Date, Time, Millisecond

Progress To Date

- Schema Finalized for Telemetry
 - Simple
 - Narrow Rows: indices pointing to data
- Finalizing Design For Other Data (separate tables)
 - Events (day/night crossings; South Atlantic Anomaly)
 - Shuttle/Servicing Mission Data
 - Derived Mnemonics
- **v** Installed the Red Brick Product
- U Established Data Warehouse Working Group
 - Spacecraft Engineers
 - Representatives from operations
- U Executed, via the GUI, Several Canned, Customizable Queries Against the Telemetry To Establish Performance Baseline

Application of Data Warehouse Technology "Sample GUI Data Request Screen"

Remaining Challenges

- U Integrate the Data Warehouse product into the CCS development cycle and perform initial checkout of integrated system: complete by April 30
- v Verify query capabilities (simple & complex) and perform associated performance testing with live users and real data
- v Deliver the system for operational support commencing August 31
 - Current data merged into 24 hour data sets then filtered and reduced using a custom preloader utility (in 2 1/2 hours)
 - Data Warehouse utility loads 5 million rows per day (in 15 minutes)
- Degin loading eight year's worth of legacy telemetry data into warehouse commencing September 15 and completing one year later
 - Use separate system to process the legacy data (synchronize with current process)
 - Plan to load 1 TB of data in one year
- v Become experienced with the data warehouse in an operational setting

Lessons Learned

- U Implementation requires that upfront design and requirements work be much more complete than a conventional data management project
- Denchmarks of potential vendor products should be performed
- A pilot project should be undertaken ("build in small steps") and then reviewed by potential users
- U JAD sessions are useful in "setting expectations" as well as capturing real user requirements (evolutionary process)
- U Consultants (from the selected vendor) can be very helpful during the design and implementation process:
 - accelerate the design process itself (schema development)
 - are invaluable in understanding the actual data warehouse product

Lessons Learned (continued)

- The more open the architecture, the easier it is to incorporate new tools (e.g., reporting tools) as they become available
- U Important to train your own staff ("more cost effective") as experienced DW designers and DBAs are in short supply
- Data Warehouses are "pricey": need unqualified support from upper management and associated commitment in terms of resources: \$\$ and people (Note: ROI often in terms of *value*.)

For More Information

υ E-Mail: klehtonen@v2pop.hst.nasa.gov

Voice: (301) 918-7412

- Nesults of the Data Warehouse Pilot Study http://www.sesd.stsci.edu/ccs_dw/
- v CCS URL: http://ccs.hst.nasa.gov
 - Point to "Data Management" Team
 - Scroll for "CCS Data Warehouse Pilot Study"
- v Red Brick's URL: http://www.redbrick.com
- **UDM Review's URL: http://www.data-warehouse.com/**